Gavril Farkas (Universidade de Berlim, Alemanha)

My field of work is algebraic geometry. A significant part of my research is concerned with the study of the geometry and topology of various moduli spaces. Among other things, I am interested in moduli of curves, enumerative geometry, syzygies of algebraic varieties and commutative algebra aspects, vector bundles on curves, abelian varieties and theta functions, Prym varieties, K3 surfaces and Brill-Noether type problems.

Mais info

ENSPM 2022 Presentation

Title: Equations and syzygies of algebraic curves

Abstract: Algebraic curves (Riemann surfaces) are among the most studied objects in mathematics due to the fact that they can be approached from the point of view of algebraic geometry, complex analysis or Galois theory. In 1984, Mark Green put forward a deceptively simple conjecture concerning the structure of the equations of an algebraic curve in its canonical embedding, amounting to the statement that the complexity of each curve of genus g can be recovered in a precise way from the equations among its canonical forms. I will present an introduction to this circle of ideas, then explain how ideas coming from topology and geometric group theory led to a recent solution of Green’s Conjecture for generic curves in arbitrary characteristics.